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Abstract Random billiards are billiard dynamical systems for which the reflection law giv-
ing the post-collision direction of a billiard particle as a function of the pre-collision di-
rection is specified by a Markov (scattering) operator P. Billiards with microstructure are
random billiards whose Markov operator is derived from a “microscopic surface structure”
on the boundary of the billiard table. The microstructure in turn is defined in terms of what
we call a billiard cell Q, the shape of which completely determines the operator P. This op-
erator, defined on an appropriate Hilbert space, is bounded self-adjoint and, for the examples
considered here, a Hilbert-Schmidt operator. A central problem in the statistical theory of
such random billiards is to relate the geometric characteristics of Q and the spectrum of P.
We show, for a particular family of billiard cell shapes parametrized by a scale invariant cur-
vature K (Fig. 2), that the billiard Laplacian P — [ is closely related to the ordinary spherical
Laplacian, and indicate, by partly analytical and partly numerical means, how this provides
asymptotic information about the spectrum of P for small values of K. It is shown, in par-
ticular, that the second moment of scattering about the incidence angle closely approximates
the spectral gap of P.

Keywords Billiards - Knudsen law - Spectral gap - Classical scattering

1 Introduction and main results

In the highly idealized classical scattering experiment shown in Fig. 1, a macroscopically
flat surface in dimension 2 with a periodic, piecewise smooth, “molecular contour” is probed
by a billiard particle and the angle of scattering is recorded as a function of the angle of inci-
dence. The interaction between particle and surface consists of elastic collisions. The angle
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Fig. 1 An idealized scattering experiment

of incidence is under experimental control, but the precise position at which the particle hits
the microscopic surface contour is random. The scattered angle is then a random function
of the incidence angle, and the transition probabilities operator P describing the scattering
process, to be defined shortly, depends canonically on the microscopic contour. The opera-
tor P gives rise to a class of Markov chains with continuous state space. Such a chain may
be interpreted as a sequence of random directions of a billiard particle undergoing random
flight inside a 2-dimensional channel whose boundary consists of two parallel lines with a
given microstructure.

We henceforth refer to P as the Markov operator of the surface microstructure. One of
the central questions in the theory of Markov chains with general state space is to describe,
given such a P, its stationary distribution (or distributions, if it is not ergodic) and estimate
the speed of convergence to stationarity. It can be shown under very general assumptions
on the microstructure [4] that the stationary probability of scattered angles is unique and
is given by the well-known Knudsen cosine law, dv(¢) = %coswdgo (the normalization
constant 1/2 is for dimension 2), where ¢ measures angles relative to the normal to the
(macroscopically flat) surface. This is the case regardless of the shape of the microstructure.
(For an experimental view of the cosine law, it is interesting to go back to Knudsen’s now
classical work. See, for example, [6].) The stationary distribution is a universal feature of
these kinds of systems at equilibrium, independent of the details of the interaction related to
the geometric features of the given billiard microstructure.

On the other hand, it can be expected that such properties of the Markov process as
mixing times and decay of correlations depend on those detailed features. Properties of
the Markov chain pertaining to relaxation to equilibrium are related to spectral properties
of P. The main concern of this paper is to investigate the spectrum of P for the specific
family of microstructures shown in Fig. 2. (We like to think of this family, for varying K, as
representing the “molecular structure” of a surface made of closely packed discs of a fixed
radius, which is then probed by different species of billiard gas molecules of different radii.
By varying the radius of the gas molecules, the effective curvature of the surface contour
is changed accordingly. In this sense, the spectral properties of P are characteristics of the
interaction rather than intrinsic properties of the surface itself.)

The Markov operator can be defined on the Hilbert space L?((—m /2, 7/2), v) of square-
integrable functions on the set of scattered angles with the stationary probability measure
v, and it turns out to be a bounded self-adjoint operator with nice spectral properties. For
example, it is shown in [4], under fairly general conditions, that Sinai-type [7] billiard cells
(see Fig. 3 for the definition of a billiard cell) correspond to compact (Hilbert-Schmidt)
operators. Throughout the rest of the paper, we find it convenient to use angle conventions
as described in Fig. 3. The Hilbert space is now L2([0, ], v) and the “cosine law” becomes
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Fig. 2 A simple billiard microstructure consisting of arcs of circle. We refer to it as the bumps family.
The (scale-invariant) curvature of the bumps is defined by K = L/R, where L is the distance between two
consecutive corner points and R is the radius of the circular arcs. We assume throughout, without loss of
generality, that L = 1. This paper is concerned with properties of this particular family, as a function of K,
for small values of K. A billiard cell is indicated by the dashed lines

Fig. 3 The microstructure around a collision point on the boundary of a billiard table. The billiard cell
is denoted Q. It is the unit of pattern of the periodic structure. A billiard particle enters a cell with angle
0 € (0, ) at a position r € [0, 1] and leaves it at an angle Wy (r). The random reflection law is defined by the
condition that r is a uniform random variable over [0, 1]. The specific shape that is the focus of our work is
shown in Fig. 2

dv(9) = % sinf d6. Then P takes the form

1
(Pf)(©) 2/0 J(Wo(r))dr. (1.1

Information about the rate of convergence to stationarity can be read from the spectrum
of P. Of special interest in this regard is the so-called spectral gap which, for the purposes
of this paper, can be defined as the distance between the top eigenvalue of P, namely 1, and
the second largest eigenvalue. For our systems, 1 is a simple eigenvalue and the spectral gap
is positive [4]. In this case, the gap provides an estimate of the exponential rate of conver-
gence of some initial distribution of angles to the invariant distribution v under iterates of P.
As will be described in another paper, the spectrum of P is also needed for a precise deter-
mination of the diffusion constant of a (Knudsen) gas of billiard particles inside channels.
(In a Knudsen gas, molecules only collide with the wall of the container, or channel, and not
among themselves.)

Estimates of the spectral gap for Markov operators are often done by the coupling method
of probability theory and one typically obtains information about the second eigenvalue only.
‘We show, for the bumps family of Fig. 2, that the spectral theory of P can be described very
explicitly when the curvature parameter K is small.

Figure 4 shows the graph of the spectral gap as a function of the scale-invariant curva-
ture parameter K for the family of Fig. 2, obtained by numerical simulation of the billiard
dynamics. The salient feature of the graph that one would like to explain in analytic terms
and understand in terms of particle scattering properties is that, for relatively small values
of K, the function is very well approximated by

KZ
y(K) ==+ O(K?).
We return to this point in Sect. 2.
The main observation of the paper, Theorem 1, is that the self-adjoint operator P is
very directly related to the spherical Laplacian, which will allow us to obtain asymptotic
information about the full spectrum of P, not only the spectral gap y. Before stating the
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Fig. 4 The spectral gap of the T
Markov operator for the family of
microstructures of Fig. 2 is given, 1r
as a function of the curvature
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theorem, it is helpful to make the following simple observation concerning the billiard map
associated to the microstructure.

The function Wy (r) is the angular component of the return billiard map to the entrance
segment of Q (represented by one of the dashed lines in Fig. 3). This segment will be identi-
fied with the interval [0, 1]. Let M = [0, 1] x [0, 7] be the phase space of the billiard system
on Q, restricted to this special segment. The return billiard map to M is well-defined and
smooth on an open set of full measure of M, due to Poincaré recurrence and general prop-
erties of billiard systems. We denote this map by 7 : M — M. The T -invariant (Liouville)
probability measure on M is the measure 1 such that

1
dn(r,0) = 7 sinfdr df.

The images of the points (r,0) and (r, 7) under T are not well-defined, although we can
write Wy(r) =0 and W, (r) = & for all r. This ambiguity is eliminated by regarding T as a
map on the sphere S2, as follows. First, we consider r as a coordinate function of the cir-
cle S', so that [0, 1] x [0, 7] can be viewed as parametrizing the cylinder S' x [0, w]. By
collapsing each boundary circle of the cylinder to a point we obtain a topological sphere,
and T becomes a well-defined invertible map of the sphere S to itself. The correspondence
(s,0) — (0, ¢), where ¢ = 2mr, translates the billiard coordinates into the standard spheri-
cal coordinates. (See Fig. 5.)

This is more than a topological remark, however, since the invariant measure 1 corre-
sponds to the normalized area measure on S2. Therefore, the billiard map 7T is naturally
regarded as an area-preserving map of the 2-sphere with its standard metric. We interpret
277 and 6 as the longitude and latitude coordinates on S, respectively, and the collapsed
boundary circles of the cylinder as the north and south poles, both fixed points under 7.
Therefore, T induces in a natural way a unitary operator on L2(S?, A), where A is the nor-
malized area measure on the unit sphere, given by f+— foT.

Similarly, the Markov operator P corresponds to a self-adjoint (if Q is symmetric) op-
erator on L2(S?, A), obtained by post-composing T with the averaging operator over the
group of rotations about the north-south axis. Thus it is reasonable to expect that spherical
harmonics should play a role in the study of the spectrum of P. The main result of this paper
makes the connection explicit by relating P and the spherical Laplacian.

The following theorems refer to the family of billiard cells shown in Fig. 2. Let F(S?)
represent the space of smooth real valued functions on S that are invariant under the group
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Fig. 5 The initial state of a billiard trajectory in the cell Q is parametrized by a point on the unit sphere s2.
Under this correspondence, the return billiard map to the entrance segment of d Q (the dashed line on the
right) becomes an area preserving invertible map of S 2

G of rotations about the North-South axis. This is a dense subspace of the closed subspace
of G-invariant square-integrable functions on S%. The discrete Laplacian associated to the
operator P is simply L := P — I, where [ is the identity map, and the spherical Laplacian
restricted to F(S?) is the differential operator

1 d . do
AD=———|sinf— |.
sinf do do

Theorem 1 refers to the angle 6, defined as 6y = 38/2, where B is shown in Fig. 9. This
angle satisfies

6o =3K/2+ O(K?>).

Let Sgo represent a spherical band in S? spanning the latitudes (/2 —6,) South to (/2 —6,)
North, that is, the set given by sinf > sin 6.

Theorem 1 Let Q be a billiard cell in the family of circular bumps microstructures shown
in Fig. 2, having curvature parameter K, and let ® € F(S?). Then

KZ
PO— = ?AQ +0O(K?)

over the set Sgo.

The proof of Theorem 1 is based on an analysis of the moments of scattering, defined
as follows. Recall that the angle ® = Wy (r) is viewed as a random variable by assuming
that r is a uniform random variable over [0, 1]. Since we are assuming that K is small, the
distribution of ® should be concentrated near 8. To measure this concentration we define
the jth moment of scattering, j =0, 1, ..., by

1
£;(0):=E[(®—0)]1= / (Wo(r) —6) dr,
0

where E denotes expectation. We also define £ j(0)=E[©—-0 |/]. The next theorem con-
tains the main technical fact of the paper, which is based on an elementary geometric analy-
sis of the billiard trajectories going in and out of Q.
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Theorem 2 The following properties hold for the moments of scattering, £;(0), and the
mean deviations from the incidence angle, Ej @), j=0,1,...,forthe circular bumps family
of Fig. 2 with scale-free curvature parameter K. Let 6 = /2 and 6y = 38/2, where B is
the corner angle of the bumps geometry (see Fig. 9).

1. For 0 € [0,7], £j(w — 0) = (—1)-f8j(9). Thus it is sufficient to consider angles in
[0, r/2].
2. If 0 €6y, w /2], then

g,(g) — K]/(J + 1) + O(Kj+2) lfj is even,
P = K+ cot0/2(7 +2) + O(KI+3) if j is odd.

(Exact formulas for the £;(0) over this range of angles are shown in the proof in Sect. 5.)
3. If6 €10, /2], then

2K) +OK'*?) if6y <6 <n/2,

€0 = { (9K sin0)i/2 if6 < 6.

Roughly, Ej 0) = O(K’), and as 6 goes to 0 for a fixed K, Ej ) = O®B?).
Theorem 1 is a straightforward application of the above theorem about the moments. In
fact, let ® be smooth real valued function on (0, 7). The supremum of the kth derivative of

& will be written | ®® ||. Then by Taylor’s theorem

>® ()
k!

(PO —®)(0)=)_&(6)

k=1

+ R, (6), (1.2)

where the error term satisfies |R,(0)] < &,.1(8)|®"*V|/(n + 1)!. Retaining terms of de-
gree two or less and applying Theorem 2 we find

K? K?
(PD— D)) = a (cotd@' () + @"(0)) + O(K?) = ?AQD(O) +0O(K?. (1.3)

The proof of Theorem 2 will be given in Sect. 5.

2 The Spectrum of P

We now turn to the spectrum of P. The following observations are supported by numerical
calculations as shown below. We do not give precise mathematical justifications for them at
this point. The details of a spectral perturbation argument starting from Theorem 1, which
we need to more precisely state and prove the following claims, will be given in another
paper.

Recall that

4 (o™ 10+ ho =0
sino a0 \*""" a0

is the Legendre equation and its canonical solutions for integers [ > O are the Legendre
functions ®;, of which the first few are: ®,(8) =1, ®,(9) = cos 8, ®,(8) = (3cos’6 —1)/2.
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Fig. 6 Ratio £,(0)/y (K) as function of 6. From left to right: K =2/3, 1/3, 1/6. The constant value in the
middle region is very close to 1. This gives an asymptotic interpretation of the spectral gap y (K) of P as the
mean-square dispersion of the post-collision angle around the pre-collision angle

For small values of K, Theorem 1 suggests that the ®,; are approximate eigenfunctions of P
with the following eigenvalues:

KZ
Pd, ~ (1 -l 1)) @,.

In particular, the numerical result described in Fig. 4 supports this remark, since the
second eigenvalue of P (for/ =1) is
KZ
M=1-yK)=1—- —
3
with associated eigenfunction being approximately @, (6).
Especially noteworthy is the relationship between the second moment of scattering and
the spectral gap for sinf > sin6y:

&O)/y(K)~ 1.

The approximation is very good, as can be observed in Fig. 6. In fact, in the middle range of
angle values in Fig. 6, & (0) and y (K) look nearly identical, even for K not much smaller
than 1.

Because of this close connection between the second moment and the spectral gap, it is
worth highlighting an exact expression for &,(6) for sinf > sin6y:

arcsin(K /2)/ K
&) = 8K2/ cos(Ks)sds
0

= 4arcsin(K /2) (arcsin(K/Z) +4 X

,/1—(1{/2)2) s

This expression can be derived from the proof of Theorem 2. Notice how the second moment
is constant over this entire middle range of angles, corresponding to the flat plateau in the
graphs of Fig. 6. (This is a common feature of the even moments. The odd moments have
the form A; coté for some constant A ;. See (5.3).) As an illustration, for K =2/3 we find
&,(0) =0.1516, whereas y(2/3) = 0.1519, obtained from a finite rank approximation of P
via numerical simulation of the billiard map.
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Fig. 7 Comparison of the second and third left-eigenfunctions of P (solid line) and ® ;(0) sin6 (dots), for
j=1,2and K = 1/6. A finite rank approximation of the (compact) operator P was obtained by numerical
simulation of the billiard map, and the eigenfunctions were found numerically

As further evidence for the approximation of the eigenfunctions consider Fig. 7. In it we
compare the second and third (left)-eigenfunctions of P (which may be called eigendensities
of P. The first eigendensity is sin@, so the exact and approximate functions coincide).

There are many questions raised by the above observations. One is the extent to which
what is being described here is particular to the bumps family, or whether we are noting
something more general. Clearly, the function K2/6 that appears in front of the spherical
Laplacian A in the approximation of P — I of Theorem 1 is specific to the example at hand,
but there is numerical evidence, based on other microstructure shapes with small moments
of scattering, that A should play a central role in more general situations. We note that the
case of large K is being studied by very different methods by the authors, and an estimate of
the spectral gap is obtained; and an application of the present results to the estimation of the
diffusion constant of a Knudsen gas in channels (essentially proving a central limit theorem
for the Markov operator P) is also work in progress by the authors.

Another basic problem is to understand how the above ideas can be carried out for mi-
crostructures in dimension 3. One reason that spherical harmonics play a role in the two-
dimensional scattering problem is hinted at by the fact noted above that the deterministic
billiard map T is an area preserving map of the two-sphere. It is less clear what similar
space would be involved in the 3-dimensional version of the problem.

The question of speed of convergence to invariant measures under the iteration of certain
operators associated to deterministic billiard systems, such as transfer operators, has been
widely studied by many authors from a very different perspective. We mention [2, 8] for
example. Since our Markov chains are canonically associated to a deterministic billiard, it
may be hoped that some of the observations made here have relevance in the deterministic
context.

3 Background on Random Billiards and Microstructures

For the general definitions and properties concerning deterministic billiard dynamical sys-
tems we refer to [1]. More information about properties of random billiards and the operator
P that are mentioned in this paper without proof can be found in [4]. There is a fair amount
of work concerning random billiards in the literature. We mention only [3] and references
cited there as an example that is closely related to our viewpoint. The model we use here
was first discussed in [5].
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In the standard set up, a billiard (point) particle of a 2-dimensional billiard system moves
with constant velocity in the interior of an open subset of the Euclidean plane having piece-
wise smooth boundary—the billiard table—and reflects off the boundary of the table ac-
cording to the usual mirror reflection rule.

A random billiard is a probabilistic version of this general set up in which the mirror
reflection law is replaced with some probabilistic reflection rule. Dropping for the moment
the assumption that the system is 2-dimensional, let B denote the billiard table in R”, and
suppose that x is a regular boundary point so that the tangent space to d B at x is defined, and
n(x) is the unit normal vector to the boundary at x pointing into B. Define H (respectively,
H ) to be the set of non-zero vectors at x whose inner product with n(x) is non-negative
(respectively, non-positive). Then a general reflection law can be defined by the (measurable)
assignment, for each regular point x in dB and each v € H_, of a probability measure 1,
on HF.

One example of special interest in kinetic theory of gases is the already mentioned Knud-
sen cosine law. For this and the other examples in the paper, collisions do not change the
speed of the billiard particle, so let S* denote the set of unit vectors in H* and define for
each v € S~ a probability measure , on H;" that is independent of v and has density, rela-
tive to the area measure on S, proportional to the cosine of the angle between the direction
of reflection and n(x). We denote this reflection probability by v, so that

dv(u) =Cu,n(x))dA(x),

where u is a unit vector in H*, A is the ((n — 1)-dimensional) area measure on S*, and C
is a normalization constant.

The following definition extends this example to a much more general, but very natural
class of random billiard reflection laws. For simplicity, we denote by S either S or S_ and
also do not write the subscript if there is no possibility of confusion. Let P(S) be the space of
probability measures on S. The reflection law is then a correspondence v € S +— u, € P(S).
We still denote by v the Knudsen law just defined.

Definition 3 (Elastic random reflection) We say that a random reflection rule is elastic if it
is a correspondence v € S — u, € P(S) with respect to which the Knudsen reflection law
is stationary, that is,

U:/Mud\)(u),
N

and reflection is time-reversible with respect to v, that is,
dpyw)dv(v) =dp_, (—v)dv(—u).
(This second condition implies the first.)

The motivation for this definition is that it identifies certain desirable properties that
lend some physical plausibility, from the point of view of classical kinetic theory (in the
absence of thermal effects), to any particular model of random billiard system we may like
to consider for which the requirements of the definition can be ascertained. Also notice that
v is the angular part of the Liouville measure of a deterministic billiard system, so one may
expect a system satisfying the definition to be in some way related to deterministic billiards.

Billiards with microstructure having bilaterally symmetric cells (that is, invariant under
reflection on a line through the middle point of the entrance boundary segment of Q and
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0.5
0 T 0 ks 0 7

Fig. 8 The leftmost graph gives the density relative to the uniform distribution on [0, 7] of an arbitrary initial
probability distribution . The middle graph gives w P2, the distribution after two collisions, where P is the
Markov operator associated to the microgeometry shown on Fig. 2. The third graph shows the density after 10
collisions. Notice that it approximates well the density of the stationary distribution, dv(f) = % sin® df. The
spectrum of P as a function of the geometric parameter K provides information, for example, about the rate
of convergence uP" — v. (The above curves were obtained by approximating P via numerical simulation
of the billiard transformation)

perpendicular to it) are examples of systems with random elastic collisions (see [4]). They
can be defined in much greater generality than we do here (or in [4], where one definition is
stated more formally), so as to model non-periodic random scattering media in dimensions
2 or higher, but in the simplest form it consists of an ordinary billiard table B in dimension 2
together with a billiard cell Q, and the interaction is as described in Fig. 3. (The figure shows
the microscopic view of the interaction between the billiard particle and the boundary of B,
so the shape of B is not visible at this scale.) The scale of interaction is set by Q. Since the
length scales of B and Q are not comparable, O, and any geometric parameter associated
to it that can affect the spectrum of P, such as curvatures, are only defined up to homothety.
This incommensurability of B and Q motivates the definition of random reflection described
in Fig. 3. For a given pre-collision velocity vector represented by the angle 9, the distribution
of post-collision scattered angles is given by a measure iy such that

1
o (A) = (8 P)(A) = / xa(Wo(r))dr,
0

where A is any Borel subset of [0, 7] and §y is the Delta measure supported at 6.

The fact that random reflection for a symmetric Q is elastic (according to Definition 3)
implies that the associated Markov operator P is self-adjoint on L?([0, ], v). (See [4].)
Recall that the operator acts on functions according to 1.1 and on signed measures by
(uP)(f) = u(Pf), where u(g) := fgdu. In particular, invariance of v is expressed by
v P = v. If the microstructure is not symmetric, the adjoint of P is P* = J PJ, where J is
the unitary involution given by Jf(8) = f(w — 6). The L2-norm of P is 1, so its spectrum
is contained in [—1, 1]. It was shown in [4], and will be greatly elaborated in future paper,
that P is compact for a wide range of shapes of Q.

It is easily seen numerically that the speed of convergence of wP” to the stationary
distribution v varies greatly with the shape of Q. Figure 8 illustrates this convergence for
the precise billiard contour shown in Fig. 2.

4 The Scattering Function ¥,
For any bilaterally symmetric billiard cell shape, such as the one shown in Fig. 9, the identity

T —Wy(r)=Wyp(l—r) 4.1
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Fig. 9 The angle 6 represents the initial direction of a billiard trajectory that hits the corner point and
reflects off I'y at a grazing angle to I';. This figure also shows the definition of 8

holds. Thus one can generally assume that 6 < /2. Results obtained over this range of
angles can then be restated for 6 > /2 by symmetry, using (4.1).

From this point on we deal specifically with the one-parameter family of billiard cells
shown in Fig. 2. Let 8 denote the corner angle, i.e., the angle between the normal vectors,
ny and n,, to I'y and I', at their intersection point. (See Fig. 9.) An elementary geometric
arguments gives the relation

g =sin g “4.2)

Also define 6, as the angle representing the initial direction of a billiard trajectory that
reflects off I'; at the corner point and leaves the billiard cell along the tangent direction to
I, at the corner point. (See Fig. 9.) An examination of the angles shown in Fig. 9 gives

3B
Gy = - (4.3)
Equation (4.3) and elementary trigonometry imply
- 3K K3 @.4)
sinfp = — — —. .
)

The significance of 6y is that W, is particularly simple when sin6 > sin6 since, in this
case, each billiard trajectory only collides once with the boundary of the billiard cell. Smaller
values of 6 will be considered below.

We sketch now some of the general properties of the graph of W, for 6 in this range of
values. This is shown on Fig. 10. As already noted, there is no loss of generality in assuming
that 0 < 6 < /2. When sinf > sin 6, the function W, has a jump discontinuity at

2
1 1=y1=4 1 K
ro=>z - T“ cotf = 5 — o cotf + O(K*) (4.5)
and over (0, rp) and (r, 1) it is differentiable. The limit of Wy (r) as r approaches ry from
the left is & — B, and the limit as r approaches ry from the right is 6 + 8, as is easily verified.
This is shown in Fig. 10. The incoming angle, 8, and the outgoing angle, ® = Wy(r), are
seen to be related by

0+06 Krsin6 if r < ry,
COS(T)_COSQ_{K(r—l)SiHO if r > ry. (4.6)

It is convenient to express this equation in terms of the arc-length variable, s, on I'; and
I'; instead of ®. On both segments of circular arc, s = o/ K, where « ranges from 0 to /2
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Fig. 10 A sketch of the graph of [€)
the function ® = Wy (r) for
sinf > sin6y. The parameters f
and rq are described in the text

) 1

(C] (C]

O+B

0 [4

O ) O
; r ; ”
1 T2 1 Lo T2 1

Fig. 11 For 6 relatively shallow (close to O or ), ¥y has an additional smooth piece. The sketch on the left
corresponds to 61 := /2 < 6 < 6y = 38/2, and the one on the right corresponds to 6 < ;. Similar graphs
for 6 in (m — 6y, w — 61) and [ — 67, ) are obtained by symmetry. An estimate for ® is given in the text

on both arcs. We are parametrizing the two arcs in such a way that o« = /2 corresponds to
the corner point, both over I'; and over I';. Notice that

o0 —=2Ks ifr <,
®_[9+2Ks if r > ry. @.7)
It follows from this and (4.6) that

__ | cos(@ — Ks) — Krsinb if r <ro,

cost = {cos(@—i—Ks)—l—K(l—r)sinH if r > ro. “3)
In particular,

_ s sinf/sin(d — Ks) ifr <ry

1._ 9% _ ,
AG.s) =g { —sin6/sin(6 + Ks) i r > ro. (49)

Notice that A is bounded away from O and oo since 6 > 6y = 38/2, if 0 < /2, with a
similar inequality if 6 > 7 /2.

It will be useful to consider some general features of Wy for shallow 6. By a shallow
angle we mean 6 such that sinf < sin6. Since it is sufficient to consider 6 < /2, this
means simply that 6 < 6. If K is small enough, a billiard trajectory with initial angle 6
may reflect off the boundary of the billiard cell more than once, but no more than twice. The
graph of W, is seen by inspection to have the qualitative features shown in Fig. 11. For a
rough estimate of the range of scattered angles for a given shallow 6 it will be sufficient to
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Fig. 12 Definition of the angle ®,. Compare with Fig. 11

estimate the angle ®, shown on the graph on the right in Fig. 11. This is the exit angle of a
billiard trajectory that enters the billiard cell at an angle 6, has a grazing collision with I'y
and reflects off I'; before leaving the cell. (See Fig. 12.)

By elementary geometry (based on Fig. 12) it can be shown that 6 and ®; satisty

0+0
cos( +2 2):1—1(51110. (4.10)

From this relation one derives the following estimate for ®,, where it is assumed that K < 1:
V8K sinf — 0 < ®, <a(K)v8K sinf — 0. 4.11)

Here a(K) satisfies 1 <a(K) <1+ 0.05K2.

5 Moments of Scattering

The goal of this section is to prove Theorem 2, concerning the moments of scattering in
terms of 6 and K, for small K. We assume that sin > sin6,. As always, we do the calcula-
tions for 6 < /2. Notice that formula (4.1) implies that

Ei(m —6) = (~1)/&;(0) (5.1)

which is the first claim of Theorem 2.

The contribution to the moments due to each differentiable branch of the function W,
can be written, by a change of variables, as & foﬂ/ZK (©(8,s)—0)/ A0, s)ds. From this and
(4.7) and (4.9) one has

PI2K sin(0 + K —~1)/sin(@ — K ,
£;(0) = / Sin( + Ks) + (=1)7sin® = K$) 5 3 g, (5.2)
sin@
After elementary algebraic manipulation this yields, for j =0, 1, ...,
2/t Kia; if j is even,
£6)= {2/‘+1be,~ cotd if j is odd, (5-3)

where a; = 0/3/2K cos(Ks)s/ds and b; = 0,3/21( sin(K's)s/ds. Recall that

1
B/2K = arcsin(K /2)/K = 7 + O(K?). 54)
Approximating the integrals results in

Ki/(j+1)+ O(K/*?) if j is even,

Kitlcot0/2(j +2) + O(K/+3) if j is odd. (3-3)

5,~(9)={
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0.6
0.4
0.2

0.6 K=1/31 06
0.4 0.4
0.2 0.2

0 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
0 051 15 2 25 3 0 05 1 15 2 25 3

0 1/2cos6

-0.2
-0.4
-0.6

Fig. 13 Comparison of £;(0)siné/y (K) and % cos® for 3 values of K. The horizontal axis ranges from 0
to 7w and the vertical axis is dimension-free

We now give an upper bound for Ej(e) := E[|® — 6|/] for shallow 6. If 6, < 6 < 6,
then by inspecting the graph on the left in Fig. 11 one obtains

|© — 0| <max{B,60} <38/2=3K/2+ OK?>). (5.6)
Therefore, £;(0) < (3K /2)/ + O(K/*?).If 6 < 6, the estimate (4.11) gives
|© — 0] < a(K)(8K sind)'/2. (5.7)

(Recall that a(K) is very close to 1, as indicated above.) Therefore, Ej ©) < 8a(K)*K
sin@)7/2. For concreteness, assume that K < 1. Then, as indicated, a(K) < 1.05. If 6 > 6,,
then |® — 0| < 28. Therefore,

QK) +O(K/*?) if6, <0 <m/2,

. 5.8
(9K sin9)//2 if 0 <6, (5:8)

Ej(0) < {
which proves Theorem 2. (Theorem 1 also follows, as indicated in the introduction.)

For the sake of illustrating these estimates, we show the graphs of the first few moments
for different values of K, obtained by numerical simulation of the billiard map and of P.
See Figs. 6, 13, and 14. The graphs show &;(8)/y (K), where y (K) is the spectral gap of
P, also obtained numerically. The relationship between the second moment and the spectral
gap becomes particularly clear on the graphs. For j = 1, 2, 3 we consider curvature values
K =2/3,1/3,1/6. (The graph for j =2 is shown in Fig. 6 at the beginning of the paper.)
In order to minimize error at the end-angles 0 and 7 due to the coté function, we have
plotted the first moment times sin 6. The numerically obtained values for y (K) are y (2/3) =
0.1519, y(1/3)=0.0373, y(1/6) =0.0093.

6 Conclusions

We prove that the classical scattering operator P associated to a class of random billiards
with microstructure can be approximated by the standard Laplacian on the sphere S* when a
curvature parameter of the microstructure is small. This suggests that the eigenfunctions and
eigenvalues of P can be approximated by spherical harmonics and corresponding eigenval-
ues, and we provide numerical support for this.

Of special interest is the connection between the spectrum of P and scattering character-
istics. We observe that the spectral gap of P is closely approximated by the second moment
of scattering of P around the angle of incidence.
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0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 : : : : : 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0%‘
-0.1 -0.1 -0.1
-0.2 - -0.2 -0.2
-0.3 - -0.3 -0.3
-0.4 E -0.4 : : . . : - -0.4
-0.5 -0.5 -0.5
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3

Fig. 14 The error term £3(0)/y (K) goes to zero as K — 0. From left to right: K =2/3,1/3,1/6

An elementary, but to the best of our knowledge new, observation suggesting that scatter-
ing processes of this kind in dimension 2 are connected to harmonic analysis on the 2-sphere
is that the underlying deterministic billiard map 7 is naturally viewed as an area preserving
map of S? for an arbitrary microstructure.

It is also interesting to interpret Theorem 1 from a stochastic differential equations
viewpoint. The Markov chain on the interval (0, ) defined by the Markov operator P
jumps by small steps when K is small. In this case, it makes sense to approximate the
discrete time process by a stochastic differential equation with infinitesimal generator
L= (sinh92):

pUvE o gt

and the limit process is governed by the stochastic differential equation

1
de, = §c0t®,dt +dB;,

where B, is standard Wiener process. The cotangent function term provides a drift that goes
to 400 as 0 approaches 0, and to —oo as 6 approaches m, so the process is bound to stay
in (0, ). As pointed out by the anonymous referee, this stochastic differential equation has
the Knudsen cosine law as the (reversible) invariant probability distribution. We think that
this continuous time process approximation, which is only indicated here without elabora-
tion, merits further investigation.

Acknowledgements The second author is partially supported by an NSF grant. Most of this work was
done during a visit by the first author to the University of Massachusetts, Amherst. He wishes to thank the
department of mathematics for their warm hospitality.

References

1. Chernov, N., Markarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. AMS,
Providence (2006)

2. Chernov, N., Dolgopyat, D.: Hyperbolic billiards and statistical physics. In: Proc. ICM, Madrid, Spain,
vol. II, pp. 1679-1704. Eur. Math. Soc., Zurich (2006)

3. Comets, F., Popov, S., Schutz, G.M., Vachkovskaia, M.: Billiards in a general domain with random reflec-
tions. Arch. Ration. Mech. Anal. 191, 497-537 (2009)

4. Feres, R.: Random walks derived from billiards. In: Hasselblatt, B. (ed.) Dynamics, Ergodic Theory, and
Geometry. Mathematical Sciences Research Institute Publications, vol. 54, pp. 179-222 (2007)

5. Feres, R., Yablonsky, G.: Knudsen’s cosine law and random billiards. Chem. Eng. Sci. 59, 1541-1556
(2004)

@ Springer



1054 R. Feres, H.-K. Zhang

6. Knudsen, M.: Kinetic Theory of Gases. Methuen’s Monographs on Physical Subjects. London (1952)

7. Sinai, Ya.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ.
Math. Surv. 25, 137-189 (1970)

8. Young, L.-S.: Statistical properties of systems with some hyperbolicity including certain billiards. Ann.
Math. 147, 585-650 (1998)

@ Springer



	The Spectrum of the Billiard Laplacian of a Family of Random Billiards
	Abstract
	Introduction and main results
	The Spectrum of P
	Background on Random Billiards and Microstructures
	The Scattering Function Psitheta
	Moments of Scattering
	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


